If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-34x+5=0
a = 5; b = -34; c = +5;
Δ = b2-4ac
Δ = -342-4·5·5
Δ = 1056
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1056}=\sqrt{16*66}=\sqrt{16}*\sqrt{66}=4\sqrt{66}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-34)-4\sqrt{66}}{2*5}=\frac{34-4\sqrt{66}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-34)+4\sqrt{66}}{2*5}=\frac{34+4\sqrt{66}}{10} $
| Z/2+4=-z/2 | | r+82=92 | | -10+4=5q-11 | | 9+4p+2+8=35 | | 15x-63=14x-14 | | 49x^2+44x+177=0 | | 14x^2-6=17x | | 15-3x+4(x+20)=2x+12 | | 1/3x+9=12+3x | | n2+-8n+6=0 | | 2n-8=2.8 | | 5x+x-3-9+4x=6 | | 4(2x+1)-32(x-5)=29 | | x^2=5x-18 | | -3=1-2/3v=-9 | | 10m=15+5m | | 8(3t+4)=4(11t+11) | | x/10+4=-2 | | (7x+15)^2=48 | | 4(2x+1)-3(x-5)=29 | | 2q-1=2-3q | | 2z-1/2=3/2 | | -53-8x+12x=63 | | z/9+9=10 | | ?(n+2)=9n+18 | | 6+9s=10s | | 5(2x)=2(6x-8) | | x-2=5=2 | | 2z/9+1=-6 | | -5(-6a+7)=-275 | | -5(t-1)=0 | | x²+5x+8=0 |